Psychological Well-Being in the Early Life Course: Variations by Socioeconomic Status, Gender, and Race/Ethnicity

JANE D. MCLEOD
Indiana University, Bloomington

TIMOTHY J. OWENS
Purdue University

Our analysis focuses on the implications of social status characteristics for children's psychological well-being. Drawing on social evaluation theories and stress-based explanations, we hypothesized that disadvantage cumulates across statuses (the double jeopardy hypothesis) and over time as children move into the adolescent years. To test this hypothesis, we estimated the independent and interactive effects of socioeconomic status, gender, and race/ethnicity on the latent growth curves for four outcomes, from preadolescence to early adolescence, using data from the Children of the National Longitudinal Surveys of Youth data set. Our results were consistent with the double jeopardy hypothesis for the interaction of race/ethnicity and poverty, but not for the other interactions we estimated. In the case of gender and poverty, the strength of the evidence for the double jeopardy hypothesis varied by outcome: evidence was more consistent for scholastic competence and self-esteem than for depression and hyperactivity. In the case of gender and race/ethnicity, our results consistently refuted the double jeopardy hypothesis.

Sociological social psychologists have long been interested in the association between social stratification and psychological well-being. Although much of this research focuses on adults (McLeod and Nonnemaker 1999), studies of children also find significant associations between social status characteristics and indicators of well-being such as mental health and self-esteem (Bird et al. 1988; Dodge, Pettit, and Bates 1994; Felnier et al. 1995; McLeod and Shanahan 1993; Offord et al. 1992; Owens and King 2001; Rosenberg and Pearlman 1978; Wiltfang and Scarbecz 1990). Even before children become fully aware of the implications of living in a stratified society, their positions in the stratification system have the potential to change the course of their psychological development.

Despite increasing interest in socioeconomic status among researchers of children (e.g., Entwistle and Astone 1994), knowledge about the relationship of stratification to children's psychological well-being is limited in two key ways. First, analyses of the implications of stratification for children's well-being have not yet addressed basic questions about the functional form of the relationship. Many analyses use only one status indicator or combine multiple indicators into summary measures of socioeconomic position (Bird et al. 1989; Dodge et al. 1994; Felnier et al. 1995; Kupersmidt et al. 1995; Links, Offord, and Boyle 1990; Offord, Boyle, and Racine 1989); thus they cannot consider which indicators have the strongest independent effects on well-being. In particular, studies of socioeconomic status often fail to consider race, and vice versa; even fewer studies incorporate racial comparisons beyond blacks and whites. Analyses of stratification and children's psychological well-being also rarely consider interactions among status characteristics despite evidence for such interactions among

* Earlier versions of this paper were presented at the 1999 meetings of the American Sociological Association, held in Chicago, at the Program Seminar in Identity, Self, Role and Mental Health, held at Indiana University, Bloomington. We thank all of the participants in these events, and the three anonymous SPQ reviewers, for their insights and suggestions. Direct all correspondence to Jane D. McLeod, Department of Sociology, Indiana University, Ballantine Hall 744, 1020 E. Kirkwood, Bloomington, IN 47405; jmcleod@indiana.edu.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Second, very little research has evaluated how the various dimensions of stratification influence developmental trajectories of psychological well-being for young children. By “trajectories of well-being” we mean patterns of stability and change in well-being through the early life course. Research on specific mental health problems indicates that these problems follow predictable trajectories during childhood and adolescence (McLeod and Shanahan 1996; Moffitt 1993; Offord et al. 1992; Owens 1994). Whether and how status characteristics are related to those trajectories is a question that deserves sustained attention (Boiger et al. 1995; McLeod and Shanahan 1996).

In this paper our main analytic goal is to estimate the independent and interactive effects of socioeconomic status, gender, and race/ethnicity on trajectories of scholastic competence, self-worth, depression, and hyperactivity during the transition from preadolescence (ages 10–11) to early adolescence (ages 14–15) in a national sample of American children. Our interests in multiple status characteristics and in developmental trajectories are linked by their common focus on cumulative disadvantage—across statuses and over time—as it shapes children’s well-being during this critical life stage. The four outcomes we chose have received substantial attention in prior research on stratification and psychological well-being, span problems that are characteristic of both girls and boys, and are associated with different theoretical traditions regarding the role of relative and absolute disadvantage in psychological well-being. By evaluating similarities and differences in the influence of social status on young people’s developmental trajectories, we test the empirical specificity of the theoretical explanations we introduce (Aneshensel, Rutter, and Lachenbruch 1991).

STRATIFICATION AND WELL-BEING DURING THE TRANSITION TO ADOLESCENCE

Two broad explanations have been offered for status differences in psychological well-being: social evaluation processes and socially structured variations in stressors and resources. With respect to the first, social evaluation processes shape psychological well-being through the messages they communicate about one’s social and personal worth (Cartwright 1950; Gerth and Mills 1953). Rosenberg’s (1979) theory of self-concept specifies this general notion through his claim that self-esteem derives in part from reflected appraisals (seeing oneself through others’ eyes) and social comparisons (comparing oneself with others). Insofar as persons in lower-status positions receive more negative feedback from others and compare themselves less favorably with others, we would expect them to report lower levels of worth and competence. Along a related line, feelings of relative deprivation are thought to create generalized psychological distress in the form of resentment, perceived loss of control, and anger (Lindheim and Syme 1983; Wilkinson 1996).

With respect to the second, stress-based explanations attribute status differences in psychological well-being to status differences in the numbers and types of stressors that persons experience and in the resources to which persons have access (Aneshensel 1992; Turner, Wheaton, and Lloyd 1995). Members of racial and ethnic minority groups, females, and persons from poor families are expected to encounter more stressors and to possess fewer intrapsychic and material coping resources than whites, males, and persons from wealthier families, and thus to experience lower levels of psychological well-being.

The social evaluation and stress-based explanations for status differences in psychological well-being support two key expectations: (1) social status will be associated with psychological well-being during childhood and adolescence, and (2) status differences in psychological well-being will increase with age. Status-based hierarchies become more visible and more central with age as children become more aware of the social contexts in

1 Self-esteem is also influenced by self-attributions (drawing conclusions about one’s worth and efficacy by observing one’s own successes and failures) and by psychological centrality (the weight or importance one assigns to attributes, identities, and abilities).
which they live and start moving into more heterogeneous social environments (Rosenberg 1979; Rosenberg and Pearlin 1978). In addition, initial group differences in stress exposure may grow larger over time as stressors generate additional stressors and erode existing coping resources (i.e., through "stress proliferation"; Pearlin 1999). In keeping with these arguments, cumulative disadvantage theory and its variants contend that cohorts’ life outcomes become increasingly disparate over time as the divide between “haves” and “have-nots” widens (e.g., Danner 1987; O’Rand 1996; Sampson and Laub 1997). Although this theory has been applied primarily to understanding health and crime across the adult life course, its general tenets are applicable to childhood experiences as well.

Support for these expectations varies with the status indicator and the indicator of psychological well-being. Measures of economic deprivation are associated with self-esteem among children, adolescents, and adults, but the effects of other indicators of SES are not significant in samples of young children (Demo and Savin-Williams 1983; Rosenberg and Pearlin 1978; Wiltfang and Scarbocz 1990). In contrast, parental income, education, and occupation are associated consistently with anxiety, depression, and behavior problems among young children (e.g., Dodge et al. 1994; Feltner et al. 1995; Verhulst, Akkersuis, and Althaus 1985). Economic deprivation is related to children’s mental health trajectories as well, at least through the elementary school years: persistently poor children show greater increases in mental health problems over time than nonpoor children (Bolger et al. 1995; McLeod and Shanahan 1996).

With respect to gender, girls tend to report lower levels of self-esteem than boys, beginning in early adolescence (Harter 1993; Simmons and Blyth 1987). Depression also is more common among girls than boys (Nolen-Hoeksmma and Girdus 1994; Peterson, Sarigiani, and Kennedy 1991), whereas hyperactivity is more common among boys (Offord et al. 1989). The gender difference in hyperactivity appears at young ages, but the gender difference in depression does not appear until adolescence. This implies that the latter difference is associated with the emergence of a more pronounced gender hierarchy during those years (Nolen-Hoeksmma 1990).

Finally, research on racial/ethnic differences in children’s psychological well-being yields no consistent conclusions about the groups that are at greatest risk for problems. Blacks typically report higher self-esteem than whites despite their disadvantaged social position (Gray-Little and Haf Dahl 2000; but see Bachman and O’Malley 1984). Some studies report higher levels of self-esteem for Hispanics than for whites, especially among males (Dukes and Martinez 1994; Kaplan and Halim 2000); others report either lower levels (Liu and Bila 1995) or no difference between the groups (Strasserburger et al. 1990). The little existing evidence suggests few differences in the levels of emotional and behavioral problems between black, white, and Hispanic children (Costello 1989; Knight, Virdin, and Roosa 1994; McLeod and Edwards 1995). In a recent study of young adults, however, consistently lower rates of all disorders were observed among blacks, and higher rates of externalizing disorders among U.S.-born Hispanics (Turner and Gil 2002).

The inconsistency of these results may reflect complex contingencies in the processes through which status characteristics affect psychological well-being in the early life course. We consider one such set of contingencies here: interactions among status characteristics. Both social evaluation and stress-based explanations support the expectation that levels of well-being will be lower among youths who simultaneously hold lower-status positions on more than one dimension of stratification (e.g., African-American girls) than among youths who are disadvantaged on only one dimension. The cumulation of disadvantage across statuses, sometimes called “double jeopardy” (Beale 1970; Dowd and Bengston 1978), exposes youths to higher levels of stress even while it provides them with fewer sources of strength and resilience on which to draw. Youths occupying two lower-status positions also may have fewer sources of positive comparisons, and may be judged particularly harshly by their peers.
Whether or not these expectations hold for children and adolescents is unclear. As noted, SES and gender become more visible and more meaningful as children age (Rosenberg and Pearlin 1978); this point implies that young adolescents may not experience double jeopardy as such. Children and adolescents spend much of their time in race-consonant environments, and may not be exposed to interracial comparisons (Farley et al. 1994; Rosenberg and Simmons 1972). Social status also may be a less powerful predictor of stress among children and adolescents. For example, girls often confront constrained expectations and opportunities in early adolescence (Gove and Herb 1974; Nolen-Hoeksema and Girgis 1994), but those constraints do not produce the link between gender and socioeconomic stress observed among adults (Anevern and Pearlman 1987).

In keeping with these arguments, the limited extant evidence suggests that the simple double jeopardy hypothesis does not hold for children and adolescents. In a sample of children in grades 2, 3, and 4 followed for three years, Bolger and colleagues (1995) reported that persistent economic hardship predicted rates of increase in internalizing and externalizing problems over time more strongly for whites than for blacks; McLeod and Nommaker (2000) reported similar results in a national sample of children ages 4 to 9. Data are not available for adolescents, but results are mixed in adult samples: some studies find stronger effects of SES for blacks (Kessler and Neighbors 1986) and others find weaker effects (Cockerham 1990). These inconsistencies suggest that racial differences in the effects of SES are in flux at adolescence.

The double jeopardy hypothesis also leads us to expect a stronger relationship between socioeconomic deprivation and psychological well-being for girls than for boys. Here, too, empirical evidence is mixed. Bolger and colleagues (1995) found that rates of increase in internalizing and externalizing problems were more sensitive to poverty status for elementary-school-aged boys than girls. Simmons and Blyth (1987) reported that SES was associated positively with boys’ self-esteem in grades 6 and 7 but less consistently with girls’ self-esteem. (The authors found a positive indirect effect through school problem behavior, but a negative direct effect.) In contrast, Dornbusch and colleagues (1991) reported that adolescent girls experienced more psychological symptoms in response to stress than adolescent boys. The divergence of these findings suggests that the patterns of association between gender, SES, and psychological well-being change between childhood and adolescence, and differ for different outcomes.

Finally, with respect to race/ethnicity and gender, feminist theorists contend that minority women are exposed to disproportionately high levels of stress and have access to relatively few resources (Beale 1970; Essed 1991), implying that their levels of psychological well-being would be particularly low. Developmental research on black youths implies otherwise, however. Spencer (1999) contends that black boys confront expectations of hypermasculinity which impose an additional psychological burden and challenge healthy identity development, particularly in school. In addition, black girls may compare themselves more favorably with black boys than do white girls with white boys because they observe the constraint in opportunities available to black boys and/or expect to enjoy relatively egalitarian adult roles (Taylor et al. 1991). In line with these arguments, the few studies available find that the gender difference in self-esteem is larger for whites than for blacks (Martinez and Dukes 1987; Owens and King 2001; Richman, Clark, and Brown 1985; Turner and Turner 1982, but Simmons et al. 1978 reported no difference).

The lack of systematic research on the double jeopardy hypothesis for children and adolescents precludes firm conclusions. In our analysis, we use this hypothesis as an orienting framework to evaluate the functional form of the associations between status characteristics and children’s psychological well-being in preadolescence, but also to examine how these associations change during the transition to adolescence.

2 Adolescent girls and boys were not affected differentially by stressors, however, in analyses of physical symptoms, grades, or deviant behaviors.
WELL-BEING IN THE EARLY LIFE COURSE

METHODS

Sample

We analyze data from the Children of the National Longitudinal Surveys of Youth (NLSY), collected by the Center for Human Resource Research at The Ohio State University. The NLSY traces young men's and women's labor market experiences longitudinally through interviews with a series of cohorts. One cohort of young women in the study has been interviewed annually since 1979, when they were between ages 14 and 21. In 1986, when they were 21 to 28, the Center conducted the first of a series of assessments of the cohort's children to track the children's developmental progress. These children have been assessed biennially since that time.

For purposes of our analysis, we created a synthetic cohort of youths ages 10–11 that we followed for three waves. The first cohort consists of youths ages 10–11 in 1986 who were followed through 1990, when they were 14–15 years old. The second cohort consists of youths ages 10–11 in 1988 who were followed through 1992, when they also were 14–15. Our decision to work with a synthetic cohort was motivated by two features of the NLSY data: the relatively small number of children in the relevant age group during the early years of data collection, and the disproportionately young ages of these children's mothers. By combining two separate cohorts of children ages 10–11, we were able to increase the number of children in the analysis and to alleviate (although admittedly not eliminate) the bias in mothers' ages. We considered beginning our trajectories with children ages 8–9 (the earliest ages for which the measures of self-concept were collected), but prior analyses of NLSY data suggest that the self-concept measures are not reliable for children younger than 10 (Mott et al. 1998). In addition, although we would have preferred to add another cohort of children ages 10–11, the self-concept measures were not asked of children 14 or older beginning in 1994.

The predominance of young mothers may attenuate the relationships between race/ethnicity, SES, and children's outcomes inasmuch as the mothers' youthfulness narrows socioeconomic variation and homogenizes the sample. The sample, however, has a key strength that compensates for this situation: it includes oversamples of black and Hispanic children, yielding relatively large sample sizes for those groups (n = 266 and 101 respectively).

The years covered by our analysis span a critical transition period in children's lives. Most children move out of elementary school and into middle school or junior high school at this time. This move has been associated with declines in self-esteem, particularly for girls (Simmons, Rosenberg, and Rosenberg 1973). Furthermore, this period marks a significant shift toward peer-group affiliations and the accompanying concerns with acceptance, popularity, and the like (Magnusson, Stattin, and Allen 1986; Simmons and Blyth 1987), the emergence of group identities in the context of self-understanding (Hill and Lynch 1983; Quintana 1998), and an increase in youths' exposure to others of different backgrounds (Petersen 1988). By examining trends in diverse indicators of well-being during this period of the life course, we may be able to shed new light on the developing self during this important phase. On the basis of the age restrictions we imposed, 628 children were available for the analysis; 570 of these were members of the three racial/ethnic groups that we considered.3

Latent Growth Curve Models

We used latent growth curve models to analyze the data. These models depict repeated measures as intraindividual growth curves and their interindividual differences. More technically, they can be described as two-level, hierarchical models that include both individual and group components. At the individual (or first) level, change is modeled as a function of time (see Eq. (1)). Specifically, the dependent variable, Y, for individual i at time k is depicted as a function of that individual's expected value on Y at the first time point (the intercept, \(\beta_0 \)); the lin-

3 The remaining 58 children belonged to Asian and/or American Indian groups. We eliminated from the analysis 63 children who were members of an oversample of economically disadvantaged whites that was dropped from the study in 1990.
ear slope for the child’s trajectory, or growth curve (β_{1i}), which indicates the rate of change per unit of time; and an error term (e_{ik}), which represents deviations from the predicted level of Y unique to child i at time k.

$$Y_{ik} = \beta_0 + \beta_1 t_{ik} + e_{ik} \quad (1)$$

The individual-level parameters describe underlying patterns in repeated measures: our outcome measures of scholastic competence, self-worth, and the rest. The parameters of primary analytic interest are the mean intercept and the mean slope, which can be interpreted as the average level and slope of the trajectory across the sample.

At the group (or second) level, interindividual differences in the intercept and slope are modeled as a function of selected predictors, represented in Eq. (2) by X_r.

$$\begin{align*}
\beta_0 &= \gamma_{00} + \gamma_{01} X_i + u_{i0} \\
\beta_1 &= \gamma_{10} + \gamma_{11} X_i + u_{i1}
\end{align*} \quad (2)$$

In our analysis, we focus on how three predictors—socioeconomic status, gender, and race/ethnicity—influence the children’s growth curve parameters, both separately and in combination. Latent growth curve models can be estimated with either a hierarchical linear modeling strategy or a simultaneous equation modeling strategy (see Willett and Sayer 1994); we use the latter here.

Some respondents did not provide valid data for all three waves included in the analysis. Most commonly, respondents who participated in an earlier wave dropped out of the study in later waves, but some respondents showed other patterns of missing data as well.\(^4\) To take advantage of all the available data, we estimated all of the models using full-information maximum-likelihood (FIML) estimation in AMOS. The FIML approach yields parameter estimates that are consistent and efficient under the assumption that the data are missing at random or completely at random (see Arbuckle 1996).\(^5\)

Measures

Status. We operationalized race and ethnicity with dummy variables for Hispanic and black, with whites as the omitted group. Although we would have liked to expand the analysis of race/ethnicity beyond these groups, the sample contained too few Asians and Native Americans. Because race was not assessed independently for the children, we used the mother’s primary reported racial/ethnic origin.

We included two measures of SES in the analyses: the child’s poverty history through the first data point (1986 or 1988, depending on the cohort), and the child’s poverty history between the first and the third data point (1990 or 1992). Early poverty history was operationalized as the proportion of years during the child’s life through the first wave in which his or her mother’s household income fell below the poverty line, based on mothers’ reports of income. Subsequent poverty history was measured in the same way for the years between the first and the third wave.\(^6\) Because a substantial proportion

\(^4\) Because the mothers and the children participated in different assessment procedures, their patterns of missing data are different. Three hundred ninety-seven mothers participated in all three waves, 79 participated in only the first, 64 in both the first and the second, 5 in the second and the third, 22 in the first and the third, and one in only the third. Two mothers did not participate in any of the assessments pertaining to their children, although their children provided self-report data. The comparable numbers for the children’s participation are 436 in all three waves, 84 in only the first, 27 in the first and the third, 12 in the second and the third, and three in the third wave only.

\(^5\) When missing data are nonignorable—that is, when the probability of nonresponse at any wave is related to variables other than observed predictors or prior values of the dependent variable—even FIML estimation can yield biased results. We tested for the presence of nonignorable missing data using procedures outlined by Hedeker and Gibbons (1997). Briefly, we divided respondents into subgroups based on their specific missing-data patterns, and tested the significance of coefficient differences across those groups. In none of these analyses did the coefficients vary significantly with the pattern of missing data.

\(^6\) Approximately 10 percent of respondents failed to report their family income in any given year; this implies that their poverty status for that year could not be determined. To manage the missing data, we calculated the proportion of life during which the child was poor by dividing the number of years during which the child was known to be poor by the number
of the mothers in the sample were unemployed (and often unmarried), we did not include a measure of occupational prestige. In preliminary analyses we also included a measure of mother's education; the results for that indicator paralleled those for poverty history. For parsimony we did not include mother's education in the models we present here. We represented gender with a single dummy variable for girls.

Psychological well-being. We included four measures of psychological well-being: two measures of self-concept (scholastic competence, self-worth) and two measures of specific mental health problems (depression, hyperactivity). The measures are diverse, spanning domain-specific and general components of the self-concept as well as affective, cognitive, and behavioral responses. As such, they give us access to a broader range of manifestations of psychological well-being than typically considered in studies of children and adolescents.

We measured scholastic competence and self-worth with items from Harter's (1982) Self-Perception Profile for Children, a self-report magnitude estimation scale designed for children age 8 and older. Each self-concept measure included six items; each item was scored on a scale from 1 to 4, with 4 representing a more positive evaluation of competence or worth. (The appendix lists the items that were included in each measure.) We averaged the values across the scale items to derive total scale scores (alpha = .67-.76 for scholastic competence, .63-.76 for self-worth). 7

The two measures of mental health—depression and hyperactivity—were based on the mother's report of her child's behaviors. The specific items were drawn from the Behavior Problems Index (BPI), a modification of the Achenbach Child Behavior Checklist (CBCL; Achenbach and Edelbrock 1981). The BPI covers six areas of child behavior problems; each is represented by a subscale of items (hyperactivity, depression/anxiety, peer problems, headstrong behavior, antisocial behavior, dependency). We focused on depression and hyperactivity because their associated disorders are prominent in research on children's mental health, and because respectively they represent key manifestations of internalizing and externalizing disorders. 8 The mothers reported whether each item was "often true" (3) of their child, "sometimes true" (2), or "not true" (1). We assessed hyperactivity with four of five items from the hyperactivity subscale (e.g., "child is restless or overly active"; alpha = .72-.77). The fifth item, "child is obsessive," showed different factor loadings in different years. Depression was assessed with the five items from the depression/anxiety subscale (e.g., "child is unhappy, sad, or depressed"; alpha = .67-.73). Again, we averaged values across the scale items to arrive at a total scale score. 9

The use of mothers' reports of mental health raises concerns about the validity of the measures. If, for example, mothers' reports are influenced by their own mental health status or if mothers are unaware of their children's emotional experiences, their reports may be substantially different from those offered by the children themselves. In contrast to these concerns, prior research found significant agreement between mothers' and children's reports of internalizing symptoms on the CBCL, particularly after age 10 (Renouf and Kovacs 1994; Stanger and Lewis 1993), and showed that mothers are more accurate informants regarding hyperactivity and inattention than are the children themselves (Loeber et al. 1989). Moreover, parents' reports are consistent with those of other informants such as teachers and clinicians (Achenbach, McConaghy, and Howell 1987). Thus, although a combination of mothers' and children's reports might be preferable (Bird, Gould, and Stagezza 1992), children's reports are not available in

8 The full internalizing and externalizing scales were not factor-invariant over time, and therefore could not be used in our analysis.

9 The distributions for both depression and hyperactivity were skewed negatively. We reestimated all models using logged versions of these variables. Although distributions were more reasonable in the logged versions, the results were virtually identical to those reported here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
this data set; mothers’ reports appear to be a reasonable proxy.

Other variables. We controlled mother’s marital status at the first data point in all of the analyses because marital status is related both to social status and to children’s well-being (two dummy variables for separated/divorced and never married; Duncan and Rodgers 1987). In preliminary analyses we also controlled mother’s age at the child’s birth, mother’s delinquency, self-esteem, and academic aptitude (all measured in 1980), and the child’s age. Although some of these variables were associated significantly with children’s well-being, they did not alter the relationships that we report here. Accordingly, to maintain parsimony, we eliminated them from our final models.10

Means, standard deviations, and correlations for all variables in the analysis are displayed in Appendix Table 1.

RESULTS

Table 1 reports the mean values for each outcome at each measurement occasion. A simple visual inspection of the means shows that levels of scholastic competence and self-worth increased over time, on average, while levels of depression and hyperactivity decreased. Though modest, the increase in self-worth is inconsistent with the findings of Simmons and Blyth (1987); they observed a decline in self-worth at age 12, particularly among girls making the transition to junior high school. The decline in hyperactivity continues a trend observed for younger members of this sample—the mean level of externalizing problems decreased between ages 4–5 and 8–9 (McLeod and Shanahan 1996)—and is consistent with epidemiological surveys of the general population.

These patterns were replicated in the growth curve estimations, reported in Table 2. The mean intercept indicates the estimated mean value of the outcome at the first time point (1986 or 1988). The slopes represent the average change, per two-year period, in the outcomes between ages 10–11 and 14–15. Not surprisingly, given the coding of the variables, each of the intercepts differed significantly from zero. The slopes also were significantly different from zero for scholastic competence ($\beta = .043$, $p < .05$) and hyperactivity ($\beta = -.063$, $p < .01$), but not for self-worth and depression. The slopes for scholastic competence and self-worth were positive, indicating that the average child experienced increases in positive self-evaluations during this stage in the life course. The slopes for depression and hyperactivity were negative; this finding indicates that children’s feelings of depression and levels of hyperactive behavior declined as they moved from childhood into early adolescence, although the decline was not significant for depression.11

In addition to providing estimates of the growth curve parameters (intercept and slope), growth curve estimation procedures furnish estimates of the variances of those parameters: that is, the amount of variation in the growth curve parameters across members of the sample. The intercept and slope variances all differed significantly from zero, indicating significant variation in the initial levels of each of the outcomes and in their rates of change over time. Our analysis rests

10 Although we conceptualized marital status as a control variable rather than as a status indicator, we considered how changes in marital status might influence the growth curves in preliminary analyses. Specifically, we included indicators for the mother’s having married and the mother’s having separated or divorced between each pair of time points (i.e., 1988–1990, 1990–1992) as predictors of the slopes of the growth curves. Approximately 13 percent of the women married at some point between the first and the third time point, and approximately the same percentage separated or were divorced. Several of the indicators of marital change were significant predictors of the slopes of the growth curves. Mother’s divorce was associated with declines in scholastic competence (regardless of when the divorce occurred) and in self-worth (if it occurred between the second and the third time point) and with increases in depression (if it occurred between the first and the second time point). Mother’s marriage in the first interval also was associated with increasing hyperactivity. The inclusion of these indicators, however, did not substantially alter the coefficients we report here.

11 The growth curves reported here allowed the error variances for the outcome measures to vary over time but assumed that the changes in outcomes were linear. We reestimated the models with a relaxation of that assumption, but the change did not result in a significant improvement in model fit. We also allowed the intercepts and slopes to covary in the models, but the covariances were not significant for any outcome.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
on the premise that some of this variation may be attributable to children's status characteristics.

In the next step of our analysis, we estimated latent growth curve models predicting the intercepts and slopes for scholastic competence, self-worth, depression, and hyperactivity from the status indicators. We began with models estimating the main effects of status. The columns displayed in Table 3 distinguish the effects of the predictors on the intercepts and slopes of the growth curves. The final rows in each column (labeled "Mean/Variance") provide the mean intercept and slope when all of the predictor variables are at their mean values, and the estimated variances of the growth curve parameters accounting for the main effects of the status indicators. These variance estimates can be compared with the original variance estimates shown in Table 2 as a gauge of our success in explaining the observed variation in the intercepts and slopes.

Beginning with the two self-concept measures, children with early histories of poverty reported lower levels of scholastic competence at baseline ($\gamma = -0.186, p < 0.01$), consistent with expectation. Subsequent histories of poverty further decreased levels of scholastic competence ($\gamma = -0.077, p < 0.01$) and of self-worth as well ($\gamma = -0.079, p < 0.01$). Moreover, once subsequent poverty history was taken into account, early poverty no longer showed a significant association with the rate of change in either self-concept indicator.

With respect to gender, we found no significant differences in scholastic competence or self-worth at ages 10–11, but differences in self-worth emerged as the children moved into early adolescence. Boys’ levels of self-worth increased during that stage of the life course; girls’ levels declined ($\gamma = -1.30, p < 0.01$). Finally, with respect to race/ethnicity, we saw the most consistent differences in the slopes of the trajectories for self-concept rather than in the initial levels. Blacks reported greater increases in scholastic competence ($\gamma = 0.068, p < 0.05$) and self-worth ($\gamma = 0.061, p < 0.10$) over time than did whites, consistent with earlier findings for elementary school-

Table 1. Means for the Measures of Children's Well-Being, Spanning Three Waves

<table>
<thead>
<tr>
<th>Measure of Well-Being</th>
<th>1986 or 88 10-11</th>
<th>1988 or 90 12-13</th>
<th>1990 or 92 14-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholastic Competence</td>
<td>2.761 (677)</td>
<td>2.761 (715)</td>
<td>2.850 (649)</td>
</tr>
<tr>
<td>N</td>
<td>547</td>
<td>448</td>
<td>384</td>
</tr>
<tr>
<td>Self-Worth</td>
<td>3.263 (392)</td>
<td>3.295 (536)</td>
<td>3.311 (619)</td>
</tr>
<tr>
<td></td>
<td>547</td>
<td>448</td>
<td>384</td>
</tr>
<tr>
<td>Depression</td>
<td>1.458 (375)</td>
<td>1.470 (383)</td>
<td>1.439 (392)</td>
</tr>
<tr>
<td></td>
<td>562</td>
<td>466</td>
<td>425</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>1.566 (482)</td>
<td>1.474 (466)</td>
<td>1.425 (466)</td>
</tr>
<tr>
<td></td>
<td>560</td>
<td>465</td>
<td>424</td>
</tr>
</tbody>
</table>

Note: Standard deviations in parentheses.

Table 2. Intercepts and Slopes From Growth Curves for Children's Well-Being, Ages 10-11 Through Ages 14-15

<table>
<thead>
<tr>
<th>Measure of Well-Being</th>
<th>Intercept</th>
<th>Intercept Variance</th>
<th>Slope</th>
<th>Slope Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholastic Competence</td>
<td>2.744**</td>
<td>.217**</td>
<td>.043*</td>
<td>.033**</td>
</tr>
<tr>
<td>Self-Worth</td>
<td>3.263**</td>
<td>.095**</td>
<td>.027</td>
<td>.034**</td>
</tr>
<tr>
<td>Depression</td>
<td>1.464**</td>
<td>.062**</td>
<td>-.008</td>
<td>.014**</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>1.557**</td>
<td>.109**</td>
<td>-.063*</td>
<td>.011*</td>
</tr>
</tbody>
</table>

*p < .05; **p < .01 (two-tailed tests)
Table 3. Unstandardized Coefficients for Models Predicting the Intercepts (Int) and Slopes of Growth Curves for Children’s Well-Being: Main Effects of Status Variables

<table>
<thead>
<tr>
<th>Scholastic Competence</th>
<th>Self-Worth</th>
<th>Depression</th>
<th>Hyperactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int</td>
<td>Slope</td>
<td>Int</td>
<td>Slope</td>
</tr>
<tr>
<td>Early Poverty</td>
<td>-1.86**</td>
<td>.001</td>
<td>.080</td>
</tr>
<tr>
<td>(0.75)</td>
<td>(0.044)</td>
<td>(0.063)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Later Poverty</td>
<td>-0.77**</td>
<td>.033</td>
<td>-0.130**</td>
</tr>
<tr>
<td>(0.055)</td>
<td>(0.033)</td>
<td>(0.048)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Girl</td>
<td>.024</td>
<td>-0.027</td>
<td>-0.072</td>
</tr>
<tr>
<td>(0.055)</td>
<td>(0.033)</td>
<td>(0.048)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Black</td>
<td>.003</td>
<td>.068*</td>
<td>-0.055</td>
</tr>
<tr>
<td>(0.055)</td>
<td>(0.033)</td>
<td>(0.048)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>-0.006</td>
<td>-0.075†</td>
<td>-0.141**</td>
</tr>
<tr>
<td>(0.072)</td>
<td>(0.043)</td>
<td>(0.063)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>Previously Married</td>
<td>.134*</td>
<td>-0.065†</td>
<td>-0.074</td>
</tr>
<tr>
<td>(0.063)</td>
<td>(0.037)</td>
<td>(0.055)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>Never Married</td>
<td>.064</td>
<td>-0.024</td>
<td>-0.079</td>
</tr>
<tr>
<td>(0.062)</td>
<td>(0.037)</td>
<td>(0.054)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Mean</td>
<td>1.766**</td>
<td>.099*</td>
<td>3.354**</td>
</tr>
<tr>
<td>Variance</td>
<td>213**</td>
<td>.029**</td>
<td>.094**</td>
</tr>
</tbody>
</table>

*† p < .10; * p < .05; ** p < .01 (two-tailed tests)

Children (Pallas et al. 1990). In contrast, Hispanics reported lower levels of self-worth than whites at baseline (γ = -1.14, p < .01) and a lower rate of increase in scholastic competence through the early adolescent years (γ = -0.075, p < .10).

In regard to the two mental health measures, early histories of poverty were not associated with depression and hyperactivity at ages 10–11 but were related to increases in depression (γ = 0.57, p < .05) and hyperactivity (γ = 0.58, p < .01) during the preadolescent and early adolescent years. That is, economic deprivation in early life exerted a significant effect on mental health in later life even with controls for subsequent poverty history. In keeping with prior research, girls registered higher levels of depression (γ = 0.031, p < .10) and lower levels of hyperactivity (γ = -1.13, p < .01) at baseline. Somewhat surprisingly, however, we found no gender differences in rates of change in depression over time (Petersen et al. 1991; Simmons and Blyth 1987). In contrast, race/ethnicity was related to both the levels and the rates of change in the mental health outcomes: blacks reported lower levels of depression at baseline (γ = -0.079, p < .01), and a more pronounced decline over time in depression (γ = -0.041, p < .05) and hyperactivity (γ = -0.062, p < .01). The pattern of results for Hispanics was similar to that for blacks, but was not significant for hyperactivity.

Interactions Among Status Characteristics

The analyses of main effects support our general expectation that stratification is relevant to children’s psychological well-being, but they do not address our main concern: interactions among status characteristics. To address the latter, we estimated multiplicative interactions between race/ethnicity and poverty history, gender and poverty history, and gender and race/ethnicity when predicting the growth curve parameters. Because we were concerned about multicollinearity among the interaction terms, we estimated the models with each of the three sets of interactions (e.g., race/ethnicity and poverty history) included separately. Of the 64 interactions that we estimated, 19 (30%) were significant, well above chance expectation. The coefficients are displayed in Tables 4 through 6.

The double jeopardy hypothesis proposes that black and Hispanic youths are affected more strongly by low SES than are white youths. Prior research among young children has not supported the hypothesis, but our results do so (see Table 4). Specifically, later poverty exerted a greater negative effect on the slope of scholastic competence for blacks...
Table 4. Unstandardized Coefficients for Models Predicting the Intercepts (Int) and Slopes of Growth Curves for Children's Well-Being: Interactions Between Race/Ethnicity and Poverty

<table>
<thead>
<tr>
<th></th>
<th>Scholastic Competence</th>
<th>Self-Worth</th>
<th>Depression</th>
<th>Hyperactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int</td>
<td>Slope</td>
<td>Int</td>
<td>Slope</td>
</tr>
<tr>
<td>Black</td>
<td>.010</td>
<td>.074**</td>
<td>-.073</td>
<td>.124**</td>
</tr>
<tr>
<td></td>
<td>(.055)</td>
<td>(.033)</td>
<td>(.048)</td>
<td>(.035)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>-.007</td>
<td>-.062</td>
<td>-.143*</td>
<td>-.006</td>
</tr>
<tr>
<td></td>
<td>(.072)</td>
<td>(.043)</td>
<td>(.063)</td>
<td>(.045)</td>
</tr>
<tr>
<td>Early Poverty</td>
<td>-.180**</td>
<td>-.022</td>
<td>.055</td>
<td>.058</td>
</tr>
<tr>
<td></td>
<td>(.075)</td>
<td>(.044)</td>
<td>(.065)</td>
<td>(.047)</td>
</tr>
<tr>
<td>Later Poverty</td>
<td>-.023</td>
<td>-.066*</td>
<td>.016</td>
<td>.039</td>
</tr>
<tr>
<td></td>
<td>(.033)</td>
<td>(.033)</td>
<td>(.033)</td>
<td>(.019)</td>
</tr>
<tr>
<td>Black x Early Poverty</td>
<td>-.015</td>
<td>.026</td>
<td>.046</td>
<td>-.157**</td>
</tr>
<tr>
<td></td>
<td>(.073)</td>
<td>(.043)</td>
<td>(.063)</td>
<td>(.046)</td>
</tr>
<tr>
<td>Black x Later Poverty</td>
<td>-.061†</td>
<td>.016</td>
<td>.016</td>
<td>.103</td>
</tr>
<tr>
<td></td>
<td>(.036)</td>
<td>(.036)</td>
<td>(.036)</td>
<td>(.021)</td>
</tr>
<tr>
<td>Hispanic x Early Poverty</td>
<td>.002</td>
<td>.036</td>
<td>.016</td>
<td>.103</td>
</tr>
<tr>
<td></td>
<td>(.122)</td>
<td>(.072)</td>
<td>(.106)</td>
<td>(.077)</td>
</tr>
<tr>
<td>Hispanic x Later Poverty</td>
<td>-.089</td>
<td>-.034</td>
<td>.016</td>
<td>.034</td>
</tr>
<tr>
<td></td>
<td>(.061)</td>
<td>(.061)</td>
<td>(.061)</td>
<td>(.061)</td>
</tr>
<tr>
<td>Mean</td>
<td>2.764**</td>
<td>.083†</td>
<td>3.361**</td>
<td>.061</td>
</tr>
<tr>
<td>Variance</td>
<td>.212**</td>
<td>.059**</td>
<td>.094**</td>
<td>.019†</td>
</tr>
</tbody>
</table>

Note: All models included controls for mother's marital status and child's gender.
† p < .10; * p < .05; ** p < .01 (two-tailed tests)

The gender-poverty interactions differed substantially for the self-concept indicators and the indicators of mental health (see Table 5). Early poverty was associated with lower levels of scholastic competence and self-worth for girls than for boys at ages 10–11. Moreover, later poverty exerted a stronger negative effect on the slope for scholastic competence among girls than among boys. In other words, as girls matured, their self-ratings of scholastic competence declined more strongly in response to continued poverty than did boys'. In contrast, for depression and hyperactivity, girls were affected less strongly by poverty than were boys. The coefficient for early poverty in predicting the intercept of depression was .085 for boys, indicating that a history of early poverty increased depression for boys. For girls, the comparable coefficient was -.052 (γ = .085 – .137). Similarly, boys' levels of hyperactivity increased with later poverty, whereas girls' did not. In sum, the double jeopardy hypothesis received mixed support in the case of

...than for whites. Among whites, the coefficient for later poverty was -.023, whereas for blacks it was -.084 (-.023 -.061). In the case of self-worth, race/ethnicity did not modify the effects of later poverty on the slope of the growth curve, but it did modify the effects of early poverty. Blacks experienced significantly greater declines in self-worth in response to early poverty (γ = .058 – .157 = -.099) than did whites (γ = .058). We observed similar patterns for depression and hyperactivity: early poverty was associated with higher levels of depression for both blacks (γ = .252 – .135 = .117) and Hispanics (γ = .172 – .35 = .037) at ages 10–11, but it was associated with lower levels of depression for whites (γ = -.135). Early poverty also was associated with increasing levels of hyperactivity over time for blacks and Hispanics (γ = .106 – .018 = .098; γ = .226 – .018 = .208, respectively) but not for whites (γ = -.018). Overall, then, our analysis strongly supports the double jeopardy hypothesis in the case of race/ethnicity and SES.

The gender-poverty interactions differed substantially for the self-concept indicators and the indicators of mental health (see Table 5). Early poverty was associated with lower levels of scholastic competence and self-worth for girls than for boys at ages 10–11. Moreover, later poverty exerted a stronger negative effect on the slope for scholastic competence among girls than among boys. In other words, as girls matured, their self-ratings of scholastic competence declined more strongly in response to continued poverty than did boys'. In contrast, for depression and hyperactivity, girls were affected less strongly by poverty than were boys. The coefficient for early poverty in predicting the intercept of depression was .085 for boys, indicating that a history of early poverty increased depression for boys. For girls, the comparable coefficient was -.052 (γ = .085 – .137). Similarly, boys' levels of hyperactivity increased with later poverty, whereas girls' did not. In sum, the double jeopardy hypothesis received mixed support in the case of...
gender and SES, with stronger support for
the self-concept outcomes than for mental
health.

Finally, we examined the interactions
between gender and race/ethnicity (see Table 6). We found significant interactions when
predicting the intercept of the growth curve
for scholastic competence. All else being
equal, black and Hispanic girls reported higher
levels of scholastic competence than black
and Hispanic boys at ages 10–11. In contrast,
white girls reported lower levels of scholastic
competence than white boys, although the
effect was not significant ($\gamma = -.081, p > .10$).
The compensating positive and negative
effects of gender across the racial/ethnic
groups explain the absence of significant race
and gender differences in the main-effects
model (Table 3).

Concerning depression, the main effects
model displayed in Table 3 showed that
blacks were less depressed than whites, on
average, at ages 10–11. The interaction model
reported in Table 6 elaborates this result by
showing that blacks' advantage with respect
to depression was more pronounced for girls
than for boys. More specifically, all else being
equal, levels of depression were reported to
be lower for black girls than for black boys ($\gamma = -.086, p < .01$); the opposite held for whites.

<table>
<thead>
<tr>
<th></th>
<th>Scholastic Competence</th>
<th>Self-Worth</th>
<th>Depression</th>
<th>Hyperactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int</td>
<td>Slope</td>
<td>Int</td>
<td>Slope</td>
</tr>
<tr>
<td>Girl</td>
<td>.136**</td>
<td>-.063†</td>
<td>.002</td>
<td>-.127**</td>
</tr>
<tr>
<td></td>
<td>(.055)</td>
<td>(.033)</td>
<td>(.048)</td>
<td>(.035)</td>
</tr>
<tr>
<td>Early Poverty</td>
<td>-.061</td>
<td>-.074†</td>
<td>.161**</td>
<td>.033</td>
</tr>
<tr>
<td></td>
<td>(.074)</td>
<td>(.044)</td>
<td>(.065)</td>
<td>(.047)</td>
</tr>
<tr>
<td>Later Poverty</td>
<td>-.056</td>
<td>-.101**</td>
<td>-.091</td>
<td>.049</td>
</tr>
<tr>
<td></td>
<td>(.023)</td>
<td>(.033)</td>
<td>(.033)</td>
<td>(.033)</td>
</tr>
<tr>
<td>Girl × Early Poverty</td>
<td>-.242**</td>
<td>-.144**</td>
<td>-.159**</td>
<td>-.039</td>
</tr>
<tr>
<td></td>
<td>(.078)</td>
<td>(.046)</td>
<td>(.067)</td>
<td>(.049)</td>
</tr>
<tr>
<td>Girl × Later Poverty</td>
<td>-.076*</td>
<td>.039</td>
<td>-.014</td>
<td>-.051†</td>
</tr>
<tr>
<td></td>
<td>(.038)</td>
<td>(.038)</td>
<td>(.038)</td>
<td>(.038)</td>
</tr>
<tr>
<td>Mean</td>
<td>2.710**</td>
<td>.106**</td>
<td>3.317**</td>
<td>.075†</td>
</tr>
<tr>
<td>Variance</td>
<td>.211**</td>
<td>.033**</td>
<td>.093**</td>
<td>.021*</td>
</tr>
</tbody>
</table>

Note: All models included controls for mother's marital status and race/ethnicity.
† $p < .10$; * $p < .05$; ** $p < .01$ (two-tailed tests)

Table 6. Unstandardized Coefficients for Models Predicting the Intercepts (Int) and Slopes of Growth Curves for Children's Well-Being: Interactions Between Gender and Race/Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>Scholastic Competence</th>
<th>Self-Worth</th>
<th>Depression</th>
<th>Hyperactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int</td>
<td>Slope</td>
<td>Int</td>
<td>Slope</td>
</tr>
<tr>
<td>Girl</td>
<td>-.081</td>
<td>-.006</td>
<td>-.043</td>
<td>-.124*</td>
</tr>
<tr>
<td></td>
<td>(.055)</td>
<td>(.033)</td>
<td>(.048)</td>
<td>(.035)</td>
</tr>
<tr>
<td>Black</td>
<td>-.076</td>
<td>.079**</td>
<td>-.025</td>
<td>.059*</td>
</tr>
<tr>
<td></td>
<td>(.055)</td>
<td>(.033)</td>
<td>(.048)</td>
<td>(.035)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>-.103</td>
<td>-.037</td>
<td>-.139*</td>
<td>.058</td>
</tr>
<tr>
<td></td>
<td>(.072)</td>
<td>(.049)</td>
<td>(.062)</td>
<td>(.046)</td>
</tr>
<tr>
<td>Girl × Black</td>
<td>-.151*</td>
<td>.019</td>
<td>-.060</td>
<td>.006</td>
</tr>
<tr>
<td></td>
<td>(.065)</td>
<td>(.038)</td>
<td>(.056)</td>
<td>(.041)</td>
</tr>
<tr>
<td>Girl × Hispanic</td>
<td>.193*</td>
<td>-.075</td>
<td>-.003</td>
<td>-.003</td>
</tr>
<tr>
<td></td>
<td>(.099)</td>
<td>(.059)</td>
<td>(.086)</td>
<td>(.086)</td>
</tr>
<tr>
<td>Mean</td>
<td>2.819**</td>
<td>.079†</td>
<td>3.339**</td>
<td>.073†</td>
</tr>
<tr>
<td>Variance</td>
<td>.212**</td>
<td>.029**</td>
<td>.094**</td>
<td>.021*</td>
</tr>
</tbody>
</table>

Note: All models included controls for mother's marital status and poverty history.
† $p < .10$; * $p < .05$; ** $p < .01$ (two-tailed tests)
(γ = .046). Furthermore, white girls’ levels of depression increased over time relative to white boys’ (γ = .050, p < .01), while Hispanic girls’ did not (γ = .050 – .066 = -.016). Finally, with respect to hyperactivity, levels of hyperactivity were reported to be lower for white girls than for white boys at ages 10–11, and we found no gender difference in the rate of change with age. In contrast, Hispanic girls’ levels of hyperactivity were higher than those of Hispanic boys at ages 10–11, but declined at a faster rate over time. With the possible exception of this last finding, the observed interactions between race/ethnicity and gender are inconsistent with the double jeopardy hypothesis.

DISCUSSION

We began our analysis by describing the trajectories for four indicators of psychological well-being during the transition from preadolescence to adolescence. In general, children’s levels of psychological well-being improved during this stage in the life course. Their self-evaluations became more positive on average, their levels of depression remained stable, and their levels of hyperactivity declined. The observed reduction in depressive and hyperactive symptomatology between ages 10–11 and 14–15 is consistent with findings of other studies that assessed mental health with self-reports and/or clinicians’ ratings of interviews with parents (e.g., Esser, Schmidt, and Woerner 1990; Ge et al. 1994). This point implies that this reduction cannot be attributed solely to our reliance on maternal reports.

With regard to the role of SES, gender, and race/ethnicity in trajectories of psychological well-being, our analysis supports two main conclusions: (1) poverty, gender, and race/ethnicity are all important determinants of self-concept and mental health during the transition to adolescence, and (2) the various dimensions of stratification influence psychological well-being interactively rather than additively. Children with marked histories of early poverty reported lower levels of scholastic competence at ages 10–11; this difference remained steady over the next four years. Moreover, subsequent poverty history was associated with rates of change in scholastic competence and self-worth over time: children with subsequent poverty histories showed less rapid increases in these outcomes than did other children. Results were somewhat different for the two mental health outcomes: early histories of poverty were associated with more rapid increases in symptoms with age, even with controls for subsequent poverty history. The latter results are consistent with more general arguments about the critical importance of early economic stability for children’s development (Duncan et al. 1998). Although our analysis cannot identify the specific experiences that mediate the effects of early poverty on later mental health, persisting patterns of parent-child relations and the self-perpetuating character of problem behaviors are likely candidates (Casp, Elder, and Bem 1987; McLeod and Shanahan 1993).

Gender also was a consistent predictor of trajectories of psychological well-being in this sample. Girls’ self-worth declined relative to boys’ during the transition to adolescence. Girls also registered marginally higher levels of depression than boys, and significantly lower levels of hyperactivity, at ages 10–11, and these differences held steady across the ages we examined. The gender differences in mental health that we observed conform to other evidence about the gendered nature of emotional expression. Girls tend to express distress in internalized ways, as through depression and anxiety, whereas boys express distress through negative behaviors (for a review, see Rosenfield 1999). Interestingly, however, the gender differences we observed were modified by race/ethnicity and poverty; this suggests that claims regarding gendered emotional expression may be oversimplistic. At ages 10–11, the gender difference in depression was smaller for blacks than for whites, a racial pattern that remained steady over the next four years. Over time, white girls’ levels of depression increased relative to white boys’, but that was not true for Hispanics. Similarly, the gender difference in hyperactivity at ages 10–11 was smaller for Hispanics than for whites, although Hispanic girls’ hyperactivity declined more markedly with age. Collectively, these results challenge the notion that gendered emotional experiences
are determined by culturally invariant patterns of social development.

With respect to race/ethnicity, black, white, and Hispanic children reported comparable levels of scholastic competence and self-worth at ages 10–11, but their experiences diverged in the early adolescent years. Black children's levels of scholastic competence and self-worth increased more rapidly over time than did white children's, whereas Hispanic children's levels of scholastic competence declined. The latter may be a harbinger of the secondary school dropout rates for Hispanics (27.8%), which are sharply higher than for blacks (13.1%) and for whites (6.9%) (U.S. National Center for Education Statistics 2001). Race/ethnicity also was implicated in the mental health trajectories: black and Hispanic children reported more rapid declines in depression and hyperactivity than did white children.

Our analysis cannot establish why minority children have such favorable experiences during adolescence in comparison with white children. Research on friendship patterns, however, suggests one possibility. Several studies have found significant racial and ethnic differences in adolescent friendships. Black boys report more intimate relations with their friends than do white boys (DuBois and Hirsch 1990), and low-income Hispanic adolescents report particularly close, trusting friendships (Way et al. 2001). Because friendships are an important source of validation and support during adolescence (Harter 1987), racial/ethnic differences in friendship patterns may account for some of the racial differences we observed in mental health trajectories. This explanation is consistent with our general observation that gender differences in trajectories of psychological well-being were smaller for blacks and Hispanics than for whites.

How strongly do our results support the double jeopardy hypothesis? With regard to the interactions among status characteristics, this is a key theoretical question. The hypothesis predicts that trajectories of psychological well-being should be particularly troubled for poor blacks and Hispanics, poor girls, and black and Hispanic girls. Our results were uniformly consistent with that prediction for the interaction of race/ethnicity and poverty, but not for the other interactions we estimated. In the case of gender and poverty, the strength of the evidence for the double jeopardy hypothesis varied by outcome. In keeping with the double jeopardy hypothesis, early and later poverty experiences were associated more strongly with declines in scholastic competence and self-worth for girls than for boys. In seeming contradiction, however, early poverty history was associated with higher levels of depression for boys but not for girls, and symptoms of hyperactivity increased with subsequent poverty only for boys. Thus it appears that the double jeopardy hypothesis receives greater support for outcomes that invoke social evaluation processes than for outcomes that are linked to stress processes. Notably, these contradictory results are consistent with other evidence that girls' self-concepts are more sensitive to peer-based evaluations than those of boys during the transition to adolescence (Simmons and Blyth 1987).

In the case of gender and race/ethnicity, our results consistently refuted the double jeopardy hypothesis. Black and Hispanic girls reported higher levels of scholastic competence than black and Hispanic boys and white girls; similar patterns held for depression. Despite persuasive arguments favoring the pronounced disadvantages associated with minority, female status (Beale 1970; Essed 1991), minority adolescent girls reported higher levels of well-being than their male counterparts.

We suggest several possible explanations for this unexpected pattern. First, while young children typically are perceived benignly regardless of their race/ethnicity or gender, adolescence introduces a generalized skepticism and fear towards racial/ethnic minorities in the United States, particularly Hispanic and black males (Anderson 1997; Farley et al. 1994). By implication, then, minority adolescent boys are at particular risk for negative responses from others. In addition, and along a related line, minority adolescent boys may receive more conflicting messages from families, peers, and the broader culture regarding appropriate behavior and future goals than do minority adolescent girls (Boykin 1986;
Cunningham 1999). Further, the factors that are associated with declines in self-worth for adolescent girls may be less central to minority adolescents' self-concepts. For example, negative body image has been identified as a key correlate of low self-esteem among adolescent girls (Simmons and Blyth 1987). Black girls, however, report less concern and more satisfaction regarding their physical appearance than do white girls (Milkie 1999); this point implies that their self-worth would be higher relative to that of black boys. Yet whatever specific explanation may account for these results, our findings challenge the utility of the double jeopardy hypothesis for understanding the intersection of race and gender during adolescence.

Our analysis was motivated by interest in two types of cumulative disadvantage: across status, as represented in our analysis of the interactions of SES, gender, and race/ethnicity; and over time, as represented in our analysis of developmental trajectories. As noted, our analysis provides important evidence that the various dimensions of stratification influence psychological well-being interactively rather than additively during the transition to adolescence. Although our results do not consistently support the double jeopardy hypothesis, they imply the need for caution in making claims about universal developmental processes. The implications, for well-being, of being a girl or a boy, poor or nonpoor, and white, black, or Hispanic vary depending on one's full status configuration.

In addition, our analysis provides evidence for the cumulation of disadvantage over time, even at the young ages we considered here (Dannefer 1987; O’Rand 1996). Children with histories of early poverty reported lower levels of scholastic competence than children without such histories, and those levels declined even further in response to continued poverty. Girls' levels of depression already were higher than boys' at ages 10–11, and the first signs of girls' decrease in self-worth were evident. In these two patterns, we see the beginnings of status-based differences in psychological well-being that extend into adulthood. Even so, our analysis also revealed important racial/ethnic differences in these trajectories. Perhaps most notably, black girls reported higher levels of well-being than research among adults might predict. Our data cannot establish whether or for how long this pattern will continue into the girls' later lives, but this information strongly indicates the merit of extending our project with other appropriate longitudinal data.

We emphasize two limitations of our analysis. First, as stated earlier, the sample is more disadvantaged than a nationally representative sample of children would be. The mothers in the sample were young when their children were born, and they were disproportionately likely to be poor. As a result, our estimates of the associations of status with psychological well-being are likely to be biased downward. This is particularly true in the case of the race-poverty interactions, for which the comparison group contained relatively few nonpoor white mothers.

Second, although our inclusion of Hispanics in the analysis represents an improvement over prior research in this area, the relatively small number of Hispanics (N = 10) did not allow us to distinguish important subgroups such as those of Cuban, Puerto Rican, and Mexican ancestry. Our inability to make these distinctions may explain why we observed fewer differences between whites and Hispanics than between blacks and whites. A more highly nuanced measure of ethnicity would allow us to develop a more precise understanding of Hispanic adolescents' experiences.

These limitations aside, our analysis demonstrates the potential utility of applying growth curve models to the study of developmental trends in social psychological attributes. The analytic elegance of the latent growth curve approach is evident in these results, inasmuch as they highlight the differential relevance of status characteristics for levels and rates of change in psychological well-being during the early adolescent years. They support continued exploration of the origins of these differences, and of age-based trends in psychological development.
APPENDIX. Indicators for Measures of Psychological Well-Being

Scholastic Competence (reported by child)
Some kids feel they are very good at their school work, but other kids worry about whether they can do the school work assigned to them.
Some kids feel like they are just as smart as other kids their age, but other kids aren’t so sure and wonder if they are as smart.
Some kids are pretty slow in finishing their school work, but other kids can do their school work quickly.
Some kids often forget what they learn, but other kids remember things easily.
Some kids do very well at their classwork, but other kids don’t do very well at their classwork.
Some kids have trouble figuring out the answers in school, but other kids almost always can figure out the answers.

Self-Worth (reported by child)
Some kids are often unhappy with themselves, but other kids are pretty pleased with themselves.
Some kids don’t like the way they are leading their life, but other kids do like the way they are leading their life.
Some kids are happy with themselves as a person, but other kids are often not happy with themselves as a person.
Some kids like the kind of person they are, but other kids often wish they were someone else.
Some kids are very happy being the way they are, but other kids wish they were different.
Some kids are not very happy with the way they do a lot of things, but other kids think the way they do things is fine.

For scholastic competence and self-worth items, children reported “which kind of kid” they were more like, and then whether the response was “really true for you” or “only sort of true for you,” yielding a score from 1 to 4; 4 denotes higher self-worth.

Depression (reported by mother)
Child has sudden changes in mood or feeling.
Child feels or complains no one loves him or her.
Child is too fearful or anxious.
Child feels worthless or inferior.
Child is unhappy, sad, or depressed.

Hyperactivity (reported by mother)
Child has difficulty concentrating, cannot pay attention for long.
Child is easily confused, seems to be in a fog.
Child is impulsive, or acts without thinking.
Child is restless or overly active, cannot sit still.

Each depression and hyperactivity item is scored from 1 to 3, where 1 represents “not true of my child” and 3 represents “often true of my child.”
Appendix Table 1, Means, Standard Deviations, and Correlations for Analysis Variables

<table>
<thead>
<tr>
<th></th>
<th>Early Poverty</th>
<th>Later Poverty</th>
<th>Girl</th>
<th>Black</th>
<th>Hispanic</th>
<th>W1 Scholastic Competence</th>
<th>W2 Scholastic Competence</th>
<th>W3 Scholastic Competence</th>
<th>W1 Self-Worth</th>
<th>W2 Self-Worth</th>
<th>W3 Self-Worth</th>
<th>W1 Depression</th>
<th>W2 Depression</th>
<th>W3 Depression</th>
<th>W1 Hyper-activity</th>
<th>W2 Hyper-activity</th>
<th>W3 Hyper-activity</th>
<th>Separated/Divorced</th>
<th>Never Married</th>
</tr>
</thead>
<tbody>
<tr>
<td>Later Poverty</td>
<td>.767**</td>
<td>.025</td>
<td>.008</td>
<td>.359**</td>
<td>.300**</td>
<td>-.006</td>
<td>.090</td>
<td>-.434**</td>
<td>.066</td>
<td>-.077</td>
<td>.003</td>
<td>-.111</td>
<td>-.029</td>
<td>-.028</td>
<td>-.150**</td>
<td>-.210**</td>
<td>-.376**</td>
<td>-.074</td>
<td>.106</td>
</tr>
<tr>
<td>Girl</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>-.030</td>
<td>-.015</td>
<td>-.029</td>
<td></td>
</tr>
<tr>
<td>W1 Scholastic</td>
<td>-.006</td>
<td>-.081</td>
<td>.008</td>
<td>.025</td>
<td>.044</td>
<td>.487**</td>
<td></td>
</tr>
<tr>
<td>Competence</td>
<td></td>
</tr>
<tr>
<td>W2 Scholastic</td>
<td></td>
</tr>
<tr>
<td>Competence</td>
<td>-.116*</td>
<td>-.314*</td>
<td>-.003</td>
<td>.104*</td>
<td>-.167**</td>
<td>.419**</td>
<td>.593**</td>
<td></td>
</tr>
<tr>
<td>W3 Scholastic</td>
<td></td>
</tr>
<tr>
<td>Competence</td>
<td></td>
</tr>
<tr>
<td>W1 Self-Worth</td>
<td>.005</td>
<td>-.007</td>
<td>.026</td>
<td>-.019</td>
<td>.037</td>
<td>.356**</td>
<td>.216**</td>
<td>.196**</td>
<td></td>
</tr>
<tr>
<td>W2 Self-Worth</td>
<td>.023</td>
<td>-.005</td>
<td>-.220**</td>
<td>.022</td>
<td>-.102*</td>
<td>.187**</td>
<td>.324**</td>
<td>.224**</td>
<td></td>
</tr>
<tr>
<td>W3 Self-Worth</td>
<td>.018</td>
<td>-.070</td>
<td>-.230**</td>
<td>.043</td>
<td>-.039</td>
<td>.075</td>
<td>.067</td>
<td>.281**</td>
<td>.217**</td>
<td>.415**</td>
<td>.386**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W1 Depression</td>
<td>.001</td>
<td>.011</td>
<td>.003</td>
<td>-.068</td>
<td>-.012</td>
<td>-.150**</td>
<td>-.137**</td>
<td>-.125**</td>
<td>-.190**</td>
<td>-.074</td>
<td>-.104*</td>
<td>.386**</td>
<td>.363**</td>
<td>.589**</td>
<td>.569**</td>
<td>.277**</td>
<td>.294**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2 Depression</td>
<td>.089</td>
<td>.100*</td>
<td>.036</td>
<td>-.020</td>
<td>-.040</td>
<td>-.129**</td>
<td>-.196**</td>
<td>-.144**</td>
<td>-.109**</td>
<td>-.139**</td>
<td>-.194**</td>
<td>.386**</td>
<td>.363**</td>
<td>.589**</td>
<td>.569**</td>
<td>.277**</td>
<td>.294**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W3 Depression</td>
<td>.136**</td>
<td>.118*</td>
<td>.068</td>
<td>-.023</td>
<td>-.086</td>
<td>-.089</td>
<td>-.190**</td>
<td>-.222**</td>
<td>-.169**</td>
<td>-.216**</td>
<td>-.290**</td>
<td>.386**</td>
<td>.363**</td>
<td>.589**</td>
<td>.569**</td>
<td>.277**</td>
<td>.294**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W1 Hyper-activity</td>
<td>.084*</td>
<td>.095*</td>
<td>-.123**</td>
<td>.056</td>
<td>-.044</td>
<td>-.164**</td>
<td>-.212**</td>
<td>-.175**</td>
<td>-.115**</td>
<td>-.110*</td>
<td>-.113*</td>
<td>.569**</td>
<td>.277**</td>
<td>.294**</td>
<td>.569**</td>
<td>.277**</td>
<td>.294**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2 Hyper-activity</td>
<td>.107*</td>
<td>.104*</td>
<td>-.102*</td>
<td>.018</td>
<td>-.042</td>
<td>-.183**</td>
<td>-.311**</td>
<td>-.304**</td>
<td>-.172**</td>
<td>-.172**</td>
<td>-.172**</td>
<td>.569**</td>
<td>.277**</td>
<td>.294**</td>
<td>.569**</td>
<td>.277**</td>
<td>.294**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W3 Hyper-activity</td>
<td>.184**</td>
<td>.184**</td>
<td>-.087</td>
<td>.002</td>
<td>-.038</td>
<td>-.111**</td>
<td>-.287**</td>
<td>-.284**</td>
<td>-.136**</td>
<td>-.102**</td>
<td>-.221**</td>
<td>.340**</td>
<td>.466**</td>
<td>.622**</td>
<td>.445**</td>
<td>.601**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separated/Divorced</td>
<td>.154**</td>
<td>.146**</td>
<td>-.032</td>
<td>.007</td>
<td>.041</td>
<td>.035</td>
<td>.053</td>
<td>-.009</td>
<td>-.027</td>
<td>.026</td>
<td>.056</td>
<td>.048</td>
<td>.049</td>
<td>.100*</td>
<td>.082</td>
<td>.041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never Married</td>
<td>.434**</td>
<td>.321**</td>
<td>-.032</td>
<td>.066**</td>
<td>-.082*</td>
<td>-.021</td>
<td>-.059</td>
<td>.003</td>
<td>-.013</td>
<td>-.057</td>
<td>-.029</td>
<td>-.011</td>
<td>.036</td>
<td>.063</td>
<td>.022</td>
<td>.062</td>
<td>.064</td>
<td>-.354**</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>.460</td>
<td>.410</td>
<td>.507</td>
<td>.467</td>
<td>.177</td>
<td>2.761</td>
<td>2.761</td>
<td>2.850</td>
<td>3.263</td>
<td>3.295</td>
<td>3.311</td>
<td>1.458</td>
<td>1.470</td>
<td>1.459</td>
<td>1.566</td>
<td>1.474</td>
<td>1.425</td>
<td>.256</td>
<td>.267</td>
</tr>
<tr>
<td></td>
<td>(.371)</td>
<td>(.437)</td>
<td>(.500)</td>
<td>(.499)</td>
<td>(.382)</td>
<td>(.677)</td>
<td>(.714)</td>
<td>(.649)</td>
<td>(.592)</td>
<td>(.636)</td>
<td>(.619)</td>
<td>(.375)</td>
<td>(.383)</td>
<td>(.392)</td>
<td>(.466)</td>
<td>(.466)</td>
<td>(.437)</td>
<td>(.443)</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Dowd, James J. and Vern L. Bengtson. 1978. "Aging in Minority Populations: An Examination of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Quintana, Stephen M. 1998. "Children's

Jane D. McLeod is an associate professor of sociology at Indiana University, Bloomington. Currently she is involved in projects concerning the experiences of youths in foster care, transitions to adulthood for youths with mental health problems, and (with Bernice Pescosolido) attitudes towards children with mental disorders. She is also preparing a critique of sociological stress research with Kathryn Lively.

Timothy J. Owens is an associate professor of sociology at Purdue University. His research focuses on issues of self-concept, identity, and well-being in the early life course. His latest book, From Adolescence to Adulthood in the Vietnam-Era, will be published by Kluwer in early 2005. In addition, he is currently studying the dynamic relationship of self and substance use; in a new line of research, he is applying role theory to the timing of deaths among American soldiers in Vietnam.